
Feature Importance for Model Fit:
Decomposing Mean Squared Error
in Nonlinear Regression

January 20, 2026

Abstract
Westudy the problemof attributing explained predictive fit in a nonlinear regressionmodel
to individual input variables. We derive an exact, additive decomposition of explained fit
by applying the fundamental theorem of calculus along a path in input space, expressing
the reduction in expected loss relative to a baseline prediction as a sum of feature-level
contributions defined by integrated loss gradients.

The resulting attribution is global, additive, and model-conditional. It generalizes Euler-
based decompositions of explained signal strength beyond linear regression and provides
a principled framework for understanding how predictive performance is generated by
inputs in nonlinear models under explicit and interpretable assumptions.

We also derive standard errors for the attributed contributions, enabling statistical
assessment of variation in feature importance across samples or over time. The computa-
tions for both the contributions and their standard errors have predictable and moderate
cost, remaining feasible even for high-dimensional models.
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1 Introduction
In complex predictive systems, two central questions arise naturally: whether

a model performs well under a given accuracy measure, and how input

features contribute to that performance. Monitoring predictive accuracy is

well understood. This paper addresses the second question by developing a

principled method for attributing predictive fit to input features.

We study feature importance in nonlinear regression models of the form

𝑦̂(𝑥) = 𝛼̂ + 𝑓 (𝜃, 𝑥), (1)

where 𝛼̂ is an intercept, 𝑥 denotes a vector of input features, and 𝜃 denotes

fitted parameters. We do not assume access to the parameters themselves,

but treat the trained model as defining a fixed prediction function 𝑓 (𝜃, ·) that

can be evaluated at admissible inputs. We focus on settings in which each

observation produces a scalar prediction.
1

Our objective is to attribute explained predictive fit back to individual

input variables for a fixed fitted model. We derive an additive, model-

conditional decomposition of predictive fit for nonlinear prediction functions

that parallels the Euler decomposition of explained signal strength in linear

regression. We can compute the resulting attribution in predictable and

manageable time, even for high-dimensional models, enabling regular and

repeated analysis with accompanying measures of statistical uncertainty.

At a high level, the approach proceeds as follows. We measure predictive

fit as the reduction in expected loss relative to a fixed baseline prediction.

To attribute this reduction to input variables in a nonlinear model, we trace

how the loss evolves as inputs move from the baseline to their realized values

along a simple path in input space. Integrating the loss gradient along this

path yields an exact additive decomposition of explained fit, generalizing

Euler-style decompositions to nonlinear settings.
2

In addition to the contributions to model fit, we also derive the corre-

sponding standard errors that reflect sampling variability in the data. These

standard errors are computed from observation-level contributions and quan-

tify uncertainty in the attribution for a fixed fitted model. They permit us to

assess, in statistical terms, whether observed variation in feature contribu-

1
We can accommodate multivariate outputs by defining a scalar loss on the output vector,

but we do not pursue this extension here.

2
This construction is analogous to a work integral in physics. When a force field is the

gradient of a scalar potential, the total change between two points equals the endpoint difference,

as formalized by the fundamental theorem of line integrals. Here, the loss gradient plays the

role of the force field. While the total change in model fit is fixed, a path is required to determine

how that change is allocated across input dimensions, which is precisely the attribution problem

we study.

1
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tions across samples or over time is plausibly attributable to noise or instead

reflects changes in predictive relevance.

The framework applies to prediction functions that are differentiable

almost everywhere along the path from baseline to realization. This includes

piecewise-smooth and piecewise-constant functions and encompasses a broad

class of models, including linear and nonlinear regressions (with or without

regularization), generalized additive models, tree-based methods and their

ensembles, neural networks, kernel methods, and state-space or regime-

switching models, provided predictive fit is evaluated using a differentiable

loss such as quadratic loss.
3

The framework does not apply to models with intrinsically discrete or

combinatorial inputs, to models whose outputs are stochastic rather than

deterministic functions of the inputs, or to models whose internal represen-

tations do not admit meaningful infinitesimal input variation. Examples

include rule-based systems, discrete optimization models, and generative

models defined through sampling.

Related work on feature importance largely addresses two distinct ques-

tions. In statistics, there is substantial work on assessing how important a

feature is for explaining the data 𝑦, without conditioning on a specific fitted

model 𝑓 (𝜃, ·); see Budescu (1993) for a review. Such measures are useful for

exploratory analysis and model development, but they generally say little

about how much a feature contributes to the fit of a particular fixed model.

In regression analysis, partial 𝑅2
is a classical measure of feature impor-

tance defined as the reduction in model fit when a regressor is removed

and the remaining coefficients are re-estimated. While partial 𝑅2
focuses on

model fit rather than individual predictions, it compares fit across alternative

models rather than decomposing the realized fit of a given fitted model.

The framework developed here instead addresses this latter decomposition

problem.

In machine learning, a separate literature focuses on how input variables

contribute to individual predictions 𝑦̂, sometimes aggregating these con-

tributions across observations to obtain global summaries; see Guidotti,

Monreale, Ruggieri, Turini, Giannotti, and Pedreschi (2018) and Molnar (2022)

for reviews. These analyses are valuable for understanding how models use

their inputs and for explaining individual predictions. However, sensitivity

of predictions to features generally says little about which features contribute

to overall model fit or predictive performance. Features can make large

3
Although tree-based models are not differentiable everywhere, the path integral remains

well defined because points of non-differentiability occur on sets of measure zero.
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contributions to predictions while simultaneously degrading predictive fit, a

concern that is particularly acute outside the training sample, once a model

has moved from development to production. Contributions to predictions

and contributions to model fit therefore measure fundamentally different

quantities. This paper focuses on the latter.

The remainder of the paper proceeds as follows. Section 2 formalizes our

notion of feature importance and derives the corresponding attribution. Sec-

tion 3 provides a detailed comparison to other prominent feature-importance

measures and section 4 concludes. Appendix A derives standard errors

for the contributions and appendix B presents the computational details

underlying the attribution.

2 Attributing Explained Fit
Our objective is to decompose a scalar measure of predictive fit into additive,

feature-level contributions. The resulting attribution answers the question:

How much does each input feature contribute to the model’s overall predictive
performance? This perspective parallels Euler decompositions of explained

signal strength in linear regression and marginal risk contributions in portfolio

attribution.

2.1 Our Notion of Feature Importance
In this paper, feature importance refers to the contribution of an input

variable 𝑥 𝑗 to the overall predictive performance within the fitted model

actually used. We call this the feature’s contribution to model fit, or simply its

feature contribution. We measure feature contributions relative to a specific

baseline model and a specific scalar measure of fit, such as explained variance

or reduction in expected loss relative to a baseline predictor.

This notion of importance is global, additive, and model-conditional. It

attributes realized predictive performance within the fitted model actually

used, rather than hypothetical performance under feature removal, refitting,

or intervention. A feature is important if it materially contributes to the

model’s predictive success, even if other features could potentially substitute

for it under alternative specifications or refitted models.

We do not interpret feature importance as local sensitivity of predictions

to marginal input changes, as robustness of performance under feature

perturbation or removal, as explanation of individual predictions, or as causal

influence on the data-generating process. These notions address different

questions and we compare them to the present framework in section 3.

By fixing attention on contribution to realized predictive performance

within a fitted model, the proposed framework exploits structure that more
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general attribution methods deliberately ignore. This restriction enables exact

additivity, clear interpretation, and computational efficiency, even in highly

nonlinear regression models with many features.

2.2 Setup
Let 𝑦 ∈ R𝑁 denote a vector of observed outcomes with finite variance, and

let 𝑋 ∈ R𝑁×𝐾
denote a matrix of input features. Each row 𝑥𝑖 ∈ R𝐾 represents

the feature vector for observation 𝑖. Importantly, 𝑋 and 𝑦 may differ from the

training sample used to estimate the model parameters 𝜃.

Purely to facilitate interpretation, we center and standardize all input

features in sample so that E[𝑥𝑖 𝑗] = 0 and Var(𝑥𝑖 𝑗) = 1 for each feature 𝑗. These

normalizations are common for regularized models and apply to continuous

inputs as well as binary indicators and group dummies.
4

Let 𝑦̂(𝑥) = 𝛼̂+ 𝑓 (𝜃, 𝑥) denote the fitted prediction produced by a regression

or prediction model for a single observation with input 𝑥. For brevity, we

suppress the fitted parameters 𝜃, which we treat as fixed throughout. Applied

row-wise to 𝑋, the fitted model produces the 𝑁-vector of predictions

𝑦̂(𝑋) = 𝛼̂ 1 + 𝑓 (𝑋), (2)

where 𝑓 (𝑋) =
(
𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑁 )

)
collects the nonlinear component.

We evaluate model fit using a differentiable loss function. We write ℓ (𝑦𝑖 , 𝑦̂𝑖)
for the scalar, per-observation, local loss and apply it element-wise across

observations. For vectors 𝑦, 𝑦̂ ∈ R𝑁 , we interpret

ℓ (𝑦, 𝑦̂) =
(
ℓ (𝑦1 , 𝑦̂1), . . . , ℓ (𝑦𝑁 , 𝑦̂𝑁 )

)
. (3)

We write ℒ(𝑦̂) = E[ℓ (𝑦, 𝑦̂)] for the corresponding sample-average, global loss.

We center outcomes so that E[𝑦𝑖] = 0. The constant predictor 𝑦 = 𝛼̂

therefore serves as a natural baseline prediction, independent of the choice

of baseline input 𝑥0.
5

The baseline remains fixed and is not refit as part of the

attribution exercise.

We define explained fit as the reduction in aggregate loss relative to this

baseline,

𝛥ℒ = ℒ(𝑦) − ℒ(𝑦̂(𝑋)) = E
[
ℓ (𝑦, 𝑦)

]
− E

[
ℓ (𝑦, 𝑦̂(𝑋))

]
. (4)

4
For discrete inputs, intermediate values encountered along the attribution path are analytical

constructs; attribution reflects the contribution of moving between regimes rather than sensitivity

to infinitesimal variation.

5
Throughout, we take the baseline prediction to be a fixed, low-dimensional reference model,

such as a constant mean or a small set of group-specific means defined by exogenous indicators.

More flexible baselines are mechanically admissible but blur the interpretation of explained fit.
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For squared error loss, 𝛥ℒ is proportional to 𝑅2
. More generally, the

formulation applies to any differentiable loss.

2.3 A Path-Integral Decomposition of Explained Fit
In order to compute the change in loss𝛥ℒ, we apply the fundamental theorem

of calculus along a path in input space that connects a baseline input to the

realized input. We do this for each observation and then average across

observations.

Let 𝑥0 denote a baseline input vector, which we take to be 𝑥0 = 0 without

loss of generality under centering in the presence of the intercept 𝛼.
6

The

baseline input serves as a common starting point for the path in input space

for all observations. It also represents an uninformed model analogous to an

intercept-only linear regression.

For each input 𝑥, we adopt a straight-line path

𝑥(𝑡) = 𝑥0 + 𝑡(𝑥 − 𝑥0), 𝑡 ∈ [0, 1]. (5)

This is the same path used by the integrated gradients (IG) methodology of

Sundararajan, Taly, and Yan (2017).
7

As Sundararajan, Taly, and Yan (2017)

emphasize, this path choice has several desirable properties: it treats all input

features symmetrically, introduces no additional modeling assumptions, and

corresponds to a uniform interpolation from the baseline input to the realized

input.

Alternative paths may be appropriate in settings with constrained input

domains, ordered information structures, or semantically grouped features.

In all cases, the path-integral construction remains valid; only the convention

for allocating interaction effects changes. In linear models, the choice of path

is immaterial, because homogeneity collapses the path integral to the Euler

decomposition. In nonlinear models, the straight-line path provides a simple

and transparent generalization that preserves additivity while minimizing

arbitrariness.

For notational simplicity, we write ℓ (𝑦, 𝑓 (𝑥)) rather than ℓ (𝑦, 𝛼̂ + 𝑓 (𝑥)).
The intercept 𝛼̂ is constant in 𝑥 and cancels from all loss gradients and path

integrals.

6
In some applications, domain knowledge may suggest a baseline input 𝑥0 ≠ 0 that represents

a state of minimal or neutral information. With an explicit intercept 𝛼, such cases should be rare.

7
Integrated gradients decompose individual predictions, whereas we decompose model fit.

The two approaches share the same path in input space but apply it to fundamentally different

target functionals.
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For a fixed observation, the fundamental theorem of calculus says that the

change in local loss relative to the baseline satisfies

ℓ (𝑦, 𝑓 (𝑥)) − ℓ (𝑦, 𝑓 (𝑥0)) =
∫

1

0

𝑑

𝑑𝑡
ℓ (𝑦, 𝑓 (𝑥(𝑡))) 𝑑𝑡 (6)

=

∫
1

0

(𝑥 − 𝑥0)⊤∇𝑥ℓ (𝑦, 𝑓 (𝑥(𝑡))) 𝑑𝑡. (7)

This identity is exact. It expresses the change in loss as an integral of the loss

gradient accumulated along the path from the baseline input to the realized

input.
8

Equation (7) decomposes the change in loss from the baseline to the

realized prediction. Explained fit corresponds to the negative of this quantity,

which is why the input-level contributions defined below carry a leading

minus sign.

Rewriting the inner product yields an additive decomposition across input

coordinates,

ℓ (𝑦, 𝑓 (𝑥)) − ℓ (𝑦, 𝑓 (𝑥0)) =
𝐾∑
𝑗=1

(𝑥 𝑗 − 𝑥0𝑗)
∫

1

0

𝜕

𝜕𝑥 𝑗
ℓ (𝑦, 𝑓 (𝑥(𝑡))) 𝑑𝑡. (8)

This identity holds point-wise for each observation 𝑦𝑖 . Averaging across

observations produces a global, additive decomposition of explained fit,

𝛥ℒ =

𝐾∑
𝑗=1

𝐶 𝑗 , (9)

where we define the contribution of input 𝑥 𝑗 as

𝐶 𝑗 = −E
[
(𝑥 𝑗 − 𝑥0𝑗)

∫
1

0

𝜕

𝜕𝑥 𝑗
ℓ (𝑦, 𝑓 (𝑥(𝑡))) 𝑑𝑡

]
. (10)

The path-integral identity in equation (7) decomposes the change in loss

from the baseline input to the realized input. Because equation (4) defines

explained fit as the negative of this change, a reduction in loss, we introduce

a leading minus sign so that positive contributions correspond to features

that improve predictive performance.

By construction, the contributions 𝐶 𝑗 sum exactly to the total reduction

in expected loss. The decomposition is model-conditional and attributes

8
The identity in equation (7) is also an instance of the fundamental theorem of line integrals.

Because the vector field ∇𝑥ℓ (𝑦, 𝑓 (𝑥)) is the gradient of a scalar function, the total change in

loss between the baseline and the realized input is path independent and equals the endpoint

difference ℓ (𝑦, 𝑓 (𝑥)) − ℓ (𝑦, 𝑓 (𝑥0)) for any smooth path connecting 𝑥0 to 𝑥. Path dependence

arises only when we seek to allocate this total change across input coordinates, as we do here.
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explained fit to the inputs of the fitted model actually used.

The quantities 𝐶 𝑗 are contributions to predictive fit and can be interpreted

as measures of feature importance for model accuracy. They are not shares

of a bounded resource. In additive decompositions of positive quantities,

individual components need not lie in the [0, 1] interval and may be negative.
9

A negative contribution 𝐶 𝑗 indicates that, conditional on the fitted model,

feature 𝑗 reduces predictive fit on average.

A negative contribution 𝐶 𝑗 does not imply that predictive performance

would improve if the corresponding feature were removed. The decom-

position is model-conditional: it attributes realized fit within a fixed fitted

model. Removing a feature and refitting produces a different model with

different fitted scores and a different attribution. Moreover, contributions

are jointly determined and need not correspond to marginal gains from

inclusion. Dropping one component generally changes the contributions of

all others. Euler-style contributions should be interpreted as an analysis of

how predictive fit is generated within the fitted model, not as a prescription

for feature selection.

The path-integral identity requires that the composite mapping 𝑥 ↦→
ℓ (𝑦, 𝑓 (𝑥)) be differentiable almost everywhere along the chosen path in

input space. Since common loss functions used to evaluate predictive fit

are differentiable almost everywhere, the main practical requirement is that

the prediction function 𝑓 (𝑥) be differentiable almost everywhere along the

path. This is not a severe restriction in practice: isolated points of non-

differentiability do not affect the integral and therefore do not invalidate

the decomposition. In particular, the framework accommodates piecewise-

constant or piecewise-smooth prediction functions, such as those arising

from tree-based models, spline-based models, or rectified linear unit (ReLU)

networks.

In principle, any smooth path connecting 𝑥0 to 𝑥 yields a valid decom-

position of the change in loss. The need to specify a path is unavoidable in

the absence of linearity or homogeneity and reflects the fact that nonlinear

models do not possess a canonical additive representation of the fitted signal.

Path dependence is not a defect of the attribution, but a consequence of

nonlinearity.

When the fitted model is approximately additive, or when interaction

effects are weak, different smooth paths yield similar attributions. When

interactions are strong, however, path dependence becomes economically

9
For Var(𝑎 + 𝑏) = Var(𝑎) +Var(𝑏) + 2 Cov(𝑎, 𝑏) we are not concerned that 2 Cov(𝑎, 𝑏) can be a

negative component of the total variance.
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meaningful: it reflects explicit choices about how interaction effects in the

loss are allocated across inputs.

The path adopted here traverses the interior of the hypercube connecting

𝑥0 to 𝑥, treating all inputs symmetrically and allocating interaction effects

continuously along the interpolation. By contrast, several alternative feature

importance measures rely on paths that move along the edges of the hyper-

cube, in which inputs are activated sequentially and interaction effects are

implicitly assigned to specific features by construction.

2.4 Squared Error Loss
The standard measure of regression fit is squared error loss,

ℓ (𝑦𝑖 , 𝑦̂𝑖) = (𝑦𝑖 − 𝑦̂𝑖)2. (11)

Under this loss, the derivative with respect to the fitted value is linear in the

residual,

𝜕ℓ (𝑦𝑖 , 𝑦̂𝑖)
𝜕𝑦̂𝑖

= −2(𝑦𝑖 − 𝑦̂𝑖). (12)

Substituting this expression into the general definition of feature contributions

yields

𝐶 𝑗 = 2E
[
(𝑥 𝑗 − 𝑥0𝑗)

∫
1

0

(
𝑦 − 𝑓 (𝑥(𝑡))

) 𝜕 𝑓 (𝑥(𝑡))
𝜕𝑥 𝑗

𝑑𝑡

]
. (13)

The factor (𝑥 𝑗 − 𝑥0𝑗) captures variation in the input, 𝜕 𝑓 (𝑥(𝑡))/𝜕𝑥 𝑗 is a local

signal sensitivity, and (𝑦 − 𝑓 (𝑥(𝑡))) is the residual along the path.

Under squared error loss, the contribution𝐶 𝑗 measures how much variation

in input 𝑥 𝑗 , relative to the baseline 𝑥0𝑗 , aligns with reductions in squared

prediction error along the path from the baseline input to the realized input.

Inputs generate larger positive contributions when their variation coincides

with directions in input space along which the fitted signal both changes

strongly and reduces residual error.

Appendix B summarizes the computation of this attribution. The algo-

rithm computes a global decomposition of explained fit by averaging these

path-integral contributions across observations. In practice, the integral is

evaluated numerically using a finite quadrature scheme; additivity holds up

to numerical integration error.

It is important to note that the numerical integration evaluates a one-

dimensional path integral. We do not numerically approximate the high-

dimensional regression function. The distinction affects speed and accuracy,
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especially in high dimensions 𝐾. Moreover, we average the path across

a potentially large number of observations 𝑁 , This further reduces small

numerical errors that may affect individual path integrals. Straightforward

numerical integration approaches, like quadrature on a fixed grid, are likely

to be very effective in this application.

2.5 Connection to Euler Decomposition
We can interpret this construction as an Euler-style decomposition, a concept

that may be familiar from portfolio risk attribution. To clarify the connection

with Euler’s theorem, recall that if 𝑔(𝑧) is a positively homogeneous function

of degree 𝑘, then Euler’s theorem implies
10

𝑔(𝑧) = 1

𝑘

∑
𝑗

𝑧 𝑗
𝜕𝑔(𝑧)
𝜕𝑧 𝑗

=
1

𝑘
𝑧⊤∇𝑧 𝑔(𝑧). (14)

Because this is an exact additive identity, it is natural to interpret 𝑧 𝑗 𝜕𝑔/𝜕𝑧 𝑗 / 𝑘
as the contribution of component 𝑧 𝑗 to 𝑔(𝑧). Although Euler’s theorem may

resemble a gradient-based expansion local to 𝑧, it is in fact a global and exact

decomposition, valid at all inputs 𝑧.

By direct comparison, equation (7) reduces to an Euler decomposition

whenever the path integral can be evaluated in closed form and expressed

as an endpoint identity. A sufficient condition for this collapse is that the

integrand be at most affine in the path parameter, so that integrating along

the path introduces no genuinely path-dependent terms.

A prominent case in which this occurs arises under squared error loss for

linear regression models. When

𝑓 (𝑥) = 𝑥⊤𝛽, (15)

the gradient of the loss with respect to inputs satisfies

𝜕

𝜕𝑥 𝑗
ℓ (𝑦, 𝑓 (𝑥)) = −2(𝑦 − 𝑥⊤𝛽) 𝛽 𝑗 . (16)

Along the straight-line path 𝑥(𝑡) = 𝑥0 + 𝑡(𝑥 − 𝑥0), the fitted value 𝑓 (𝑥(𝑡))
varies linearly in 𝑡, and the residual 𝑦 − 𝑓 (𝑥(𝑡)) therefore varies linearly as

well. Consequently, the integrand

(𝑥 𝑗 − 𝑥0𝑗)
𝜕

𝜕𝑥 𝑗
ℓ
(
𝑦, 𝑓 (𝑥(𝑡))

)
(17)

10
See Silberberg (1978) or Tasche (2008), for example.
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is affine in 𝑡, and integrating it over 𝑡 ∈ [0, 1] yields an exact endpoint identity.

Under these conditions, the line integral collapses to an endpoint identity,

yielding an Euler decomposition of explained signal strength evaluated at

the realized input,

ℓ (𝑦, 𝑓 (𝑥)) − ℓ (𝑦, 𝑓 (𝑥0)) =
𝐾∑
𝑗=1

(𝑥 𝑗 − 𝑥0𝑗)
𝜕

𝜕𝑥 𝑗
ℓ (𝑦, 𝑓 (𝑥)) (18)

= −2

𝐾∑
𝑗=1

𝛽 𝑗 (𝑥 𝑗 − 𝑥0𝑗) (𝑦 − 𝑥⊤𝛽). (19)

Linear regression with squared error loss is therefore a special case in which

the general path-integral construction reduces exactly to Euler’s theorem

applied to the explained signal, which is homogeneous of degree one in the

inputs. Hentschel (2026) analyzes this case in detail.

Outside this special case, explained fit is no longer a homogeneous function

of the inputs, and the endpoint identity implied by Euler’s theorem does

not apply. The line-integral construction therefore provides an Euler-style

decomposition absent homogeneity, recovering changes in fit by integrating

marginal contributions along a path from the baseline input to the realized

input. Like a standard Euler decomposition, our attribution is additive and

unique conditional on the model 𝑓 (·), the loss ℓ (·), the actual inputs 𝑥, the

baseline inputs 𝑥0, and the linear path connecting 𝑥0 to 𝑥.

In many applications, we can express a nonlinear model 𝑓 (𝑥) as a polyno-

mial or series expansion in 𝑥, making the model linear in a set of constructed

regressors such as monomials or interaction terms. This representation per-

mits a straightforward Euler decomposition with respect to those constructed

components.

However, individual input features generally appear in multiple such terms,

for example through 𝑥2

𝑗
, 𝑥 𝑗𝑥𝑘 , or higher-order interactions. A linear Euler

decomposition at the level of constructed regressors treats each monomial as

a separate component and does not, by itself, yield a coherent attribution at

the level of the original input features 𝑥 𝑗 .

The path-integral attribution developed here operates directly in the

original input space. It aggregates all marginal effects of a feature 𝑥 𝑗 ,

including those arising through nonlinear and interaction terms, into a single,

well-defined contribution to explained fit.

This distinction is not specific to polynomial models. The same issue arises

in neural networks and other nonlinear architectures, which are linear in large

collections of internal features or activations. Euler-style decompositions
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at that level attribute fit to internal components rather than to the original

inputs. By operating directly in input space, the path-integral attribution

yields feature-level contributions that are invariant to the model’s internal

representation.

2.6 Weighted Loss Functions

In some applications, we evaluate predictive fit under a weighted loss func-

tion. Weighting may reflect heteroskedasticity, differing importance across

observations, or the desire to emphasize particular regions of the outcome

space. In all cases, weighting affects how we measure prediction errors, but

not how features enter the attribution. We always define contributions with

respect to the original input variables, with weights entering only through

the definition of the loss.

For a generalized least squares formulation, let 𝑊 denote a weighting

matrix applied to residuals. This is commonly a whitening transformation

satisfying 𝑊⊤𝑊 = 𝛺−1
for some positive definite covariance matrix 𝛺. In

this case, we evaluate predictive fit using the transformed loss

ℓ𝑊 (𝑦, 𝑦̂) = ∥𝑊(𝑦 − 𝑦̂)∥2. (20)

This formulation is equivalent to evaluating standard squared error loss on

pre-whitened outcomes and predictions.

All derivations above apply without modification when ℓ is replaced

by ℓ𝑊 . In particular, the path-integral decomposition remains exact, with

feature-level contributions defined by integrating weighted loss gradients

along the chosen path in input space. Weighting alters the geometry of the

output space in which prediction errors are measured, but does not affect the

input space along which attribution is performed.

Scalar observation weights arise as a special case when 𝛺 is diagonal. In

this case, we can also accommodate more general loss functions. Writing

𝑤𝑖 = 𝛺−1

𝑖𝑖
, the aggregate weighted loss can be written as

ℒ( 𝑓 ) = E
[
𝑤𝑖 ℓ (𝑦𝑖 , 𝑦̂𝑖)

]
. (21)

The attribution framework applies identically in this case.

It is important to distinguish the use of weights in defining predictive

fit from the estimation procedure that produced the fitted model. The

attribution framework treats the prediction function 𝑓 (𝜃, ·) as fixed and does

not differentiate through the estimation step. Weights therefore influence
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the allocation of explained fit across inputs, but do not alter the fitted model

itself.

Weighting changes how fit is measured, but does not affect the additivity,

exactness, or model-conditional nature of the resulting attribution.

2.7 Grouped Decomposition
Because the Euler contributions sum to total explained predictive accuracy,

they can be aggregated naturally across groups of components to assess

group-level importance. Such grouping is useful when the number of

elementary components is large, when individual contributions are noisy

due to collinearity or redundancy, or when components admit meaningful

economic or structural interpretations only at an aggregated level.

Suppose the prediction components are partitioned ex ante into disjoint

groups. For a group 𝐺, define the grouped contribution as

𝐶𝐺 =

∑
𝑗∈𝐺

𝐶 𝑗 . (22)

By additivity of the Euler decomposition,

𝛥ℒ =

∑
𝐺

𝐶𝐺 , (23)

so total explained predictive accuracy is allocated exactly across groups.

This aggregation parallels the logic of Owen values (Owen, 1977), which

extend Shapley allocations to pre-specified groups of features. Unlike

Shapley-based approaches, however, grouped Euler contributions do not

require counterfactual evaluation or refitting. Once the fitted prediction and

its additive components are available, group-level contributions are obtained

by direct summation at essentially no additional computational cost.

2.8 Standard Errors
Appendix A derives standard errors for the contributions to model fit. Let 𝑐𝑖 𝑗

denote the observation-level contribution of input 𝑗 for observation 𝑖, so that

𝐶 𝑗 = E[𝑐𝑖 𝑗]. An estimator of the standard error of 𝐶 𝑗 is

𝑆𝐸(𝐶 𝑗) =
√

1

𝑁
E
[
(𝑐𝑖 𝑗 − 𝐶 𝑗)2

]
. (24)

These standard errors reflect sampling variability in the data and quantify

uncertainty in the estimated contributions to predictive fit across observations.
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Because the attribution conditions on a fixed fitted model, the standard

errors do not incorporate uncertainty about model parameter estimates. They

therefore measure variability in realized contributions rather than estimation

uncertainty. This perspective is appropriate for applications focused on

monitoring deployed models, comparing predictive relevance across samples,

or assessing changes in feature contributions over time.

Appendix A also shows how to extend these results to grouped contri-

butions, allowing standard errors to be computed directly for aggregates of

inputs without estimating a full covariance matrix.

3 Relation to Other Approaches
A surprisingly wide range of methods has been proposed for assessing feature

importance in machine learning models. This diversity persists because

these methods address fundamentally different questions. Clarifying these

distinctions is particularly important in nonlinear regression settings, where

it is often assumed that Shapley-value or perturbation-based methods are

required to assess feature importance.

A useful way to distinguish these approaches is by the phase of the mod-

eling process they are intended to support. Measures of feature importance

developed in the statistics literature are primarily designed for the research

and model-building phase. They help identify which variables are infor-

mative for explaining the outcome 𝑦 and for selecting or refining models,

often by comparing alternative specifications. Once a model has been fixed,

however, these measures provide limited guidance for understanding how

that model’s predictive performance is generated or how it changes over time.

Many feature-importance tools developed in machine learning, by contrast,

focus on explaining how features affect individual predictions. This can be

valuable during the ongoing-use phase, after a model has been built. These

methods are valuable for interpretability, communication, and diagnosing

specific model behaviors, but they are not designed to attribute changes

in overall model fit or predictive performance. Aggregating these local

explanations across observations does not generally yield a stable or exact

decomposition of global performance.

The Euler-style decomposition developed here addresses this gap directly.

By attributing realized model fit to components of the fitted model itself, it

provides a direct and computationally efficient way to understand which

features drive predictive performance of an existing model and how their

contributions evolve over time.
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These notions of feature importance are logically distinct and should not be

expected to coincide. In particular, the contribution of a feature to predictions

is not the same as its contribution to model fit, and large effects on predictions

may correspond to negligible or even negative contributions to predictive

performance.

Figure 1 provides a graphical map that is useful for the comparisons below.

3.1 Partial R-squared
In linear regression, a classical approach to assessing feature importance

is partial or incremental 𝑅2
, defined as the reduction in model fit when a

regressor is removed from the model and the remaining coefficients are

re-estimated. This measure is closely related to added-variable plots and

dominance analysis and is sometimes interpreted as a feature’s contribution

to explained variance. Budescu (1993) and Draper and Smith (2014) describe

this approach.

Partial 𝑅2
, however, answers a counterfactual question rather than the

one considered here. Because it is defined through refitting after feature

removal, it measures feature reliance or substitutability across alternative

models rather than contribution to realized fit within a fixed fitted model.

This perspective can be useful when exploring alternative specifications or

assessing redundancy among regressors, but it does not analyze how a given

fitted model generates its predictive performance.

Due to refitting, partial 𝑅2
is not additive across features: removing one

regressor changes the estimated coefficients of the remaining regressors, so

the associated changes in explained variance cannot be uniquely attributed

or summed. When regressors are correlated, partial 𝑅2
also depends on the

order of removal when more than one regressor is removed.

The Euler-style attribution developed here can be viewed as a model-

conditional analogue of variance decomposition: it attributes explained fit

within the fitted model itself, yields an exact additive decomposition, and

extends directly to nonlinear regression under differentiability of the loss.

3.2 Shapley Methods
Shapley-value-based methods, based on Shapley (1953), provide a very

general framework for attribution based on axiomatic fairness principles.

Modern implementations apply this logic to machine learning models by

defining a value function over feature coalitions and averaging marginal

contributions across subsets. Lindeman, Merenda, and Gold (1980), Kruskal

(1987), and Lundberg and Lee (2017) describe this approach. In most practical

applications, the value function is the model prediction itself, and Shapley
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Figure 1: Geometry of Feature Importance Measures
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The figure illustrates attribution of model fit in a bivariate nonlinear regression. All of the

alternative methods are generally used to explain individual predictions, which would make

comparisons inappropriate. However, the methods are quite flexible and the figure compares

approaches when all methods are focused on the same measure of model fit.

The background shows level curves of the loss surface over the feature plane, with lower

values indicating better fit. Explained fit is defined as the reduction in loss when moving from

the baseline input 𝑥0 = (0, 0) to the realized input 𝑥 = (1, 1).
The solid blue diagonal line shows the straight-line path used for the Euler-style attribution

developed in this paper; integrating the loss gradient along this path yields an exact, additive

decomposition of explained fit across input variables for the fitted model. The illustrated loss

gradients along the Euler path have a larger component in the direction of feature 1, indicating

that feature 1 receives a larger share of the explained fit than feature 2. This reflects stronger

alignment between feature 1 and the accumulated loss gradient along the path, which involves

equal displacement in both feature directions.

The dashed red paths illustrate Shapley attribution (without refitting), which averages

marginal contributions across discrete feature orderings and evaluates the loss only at corner

points of the feature space rather than along a continuous path.

The dotted green paths depict permutation or perturbation methods, which remove one

feature at a time starting from 𝑥 = (1, 1) and evaluate model fit at the adjacent nodes. These

measure feature reliance or robustness rather than contribution to realized model fit and do not

generally yield additive attributions.

Finally, the purple arrow at 𝑥 = (1, 1) shows a local gradient-based sensitivity measure

∇𝑥ℓ
(
𝑦, 𝑓 (𝑥)

)
, which captures infinitesimal responsiveness of the loss function at 𝑥, but not

contribution to overall predictive performance.



16 Decomposing Mean Squared Error in Nonlinear Regression

values are used to assess which features have the largest impact on individual

predictions.

Conceptually, Shapley values could also be applied to a measure of model

fit. In standard implementations, this would require evaluating model fit

across different subsets of features. Because features are either included or

excluded, with no notion of partial inclusion, this approach evaluates fit

at the corners of the feature space. Interpreted in this way, Shapley values

measure feature reliance: how much model performance degrades when a

feature is removed.

In many applications, Shapley values are computed after refitting the

model on each feature subset. In this case, the resulting attributions no longer

describe performance within a fixed fitted model. Instead, they reflect feature

substitutability: the extent to which other features can replace a given feature

when the model is re-estimated. In this sense, however, we can interpret

Shapley values applied to model fit as a combinatorial generalization of

partial 𝑅2
that averages over all feature removal paths.

The minimal assumptions imposed on the value function make Shapley

methods flexible and widely applicable. However, this generality comes at

the cost of substantial informational and computational inefficiency when the

value function and its gradients are already well defined and this structure is

not exploited.

From the perspective adopted here, Shapley-based measures address a

different question from model-conditional attribution of explained fit. Their

generality is valuable when the object of interest is unclear or inherently

discrete, but it is unnecessary once attention is restricted to a fixed fitted

model and a specific, differentiable measure of predictive performance.

3.3 Feature Perturbation Methods
Perturbation- and permutation-based importance measures are most com-

monly used to explain predictions rather than to attribute model fit. In their

standard form, these methods assess how predictions change when inputs

are corrupted, permuted, or removed, holding all other features fixed; see

Breiman (2001) and Fisher, Rudin, and Dominici (2019). Averaging such

effects across observations yields a global summary of how strongly each

feature influences predictions.

Interpreted this way, perturbation-based importance is a measure of

predictive influence or feature reliance: it quantifies how much the model’s

outputs depend on a given input. This notion is useful for understanding

how the model forms predictions, but it does not address how predictive
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accuracy is generated. Features can have a large effect on predictions while

contributing little, or even negatively, to model fit.

In principle, perturbation methods are flexible enough to be applied to

other objects. One could, for example, measure how a loss function changes

under feature perturbations rather than how predictions change. Interpreted

this way, perturbation methods assess the sensitivity of model performance

to disruption of individual inputs and again yield a notion of feature reliance.

For example, Gregorutti, Michel, and Saint-Pierre (2016) study variable

importance in random forests by measuring changes in mean squared error

under feature permutation.

Even in this formulation, however, perturbation-based approaches do

not yield an additive decomposition of explained fit for a fixed fitted model.

Because they rely on discrete perturbations and finite differences, the resulting

importance scores do not generally sum to total explained fit and depend on

the perturbation scheme, the correlation structure of the inputs, and whether

the model is refit after perturbation.

It is worth noting that if all features are perturbed symmetrically and

incrementally from their realized values toward a baseline input, the resulting

sequence of inputs traces a straight-line path in input space similar to the

Euler path used in this paper. In this sense, such path-based perturbation

experiments can be viewed as sampling the loss function along the Euler

path.

Perturbation methods, however, observe only changes in aggregate loss at

discrete points along this path and do not provide a principled mechanism

for allocating those changes across input coordinates. Recovering additive

feature-level contributions from such experiments requires integrating loss

gradients along the path, which is precisely the Euler-style construction

introduced here.

3.4 Gradient-Based Sensitivity Methods
Gradient-based sensitivity methods are most commonly used to explain

predictions rather than to attribute model fit. These approaches exploit

differentiability of the prediction function and measure how predictions

respond to infinitesimal changes in inputs around a point 𝑥. Belsley, Kuh,

and Welsch (1980) and Hastie, Tibshirani, and Friedman (2009) describe this

approach. The resulting input gradient ∇𝑥 𝑓 (𝑥) quantifies local predictive

sensitivity and is widely used to assess which features most strongly influence

individual predictions.

Interpreted this way, gradient-based measures describe responsiveness of

the prediction function, not contribution to predictive accuracy. Features with
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large gradients strongly affect predictions, but this alone does not indicate

whether those effects improve or degrade model performance.

In principle, gradient-based methods could be applied to a loss function

rather than directly to predictions. Differentiating the loss with respect to

inputs yields

∇𝑥ℓ
(
𝑦, 𝑓 (𝑥)

)
= ℓ 𝑦̂

(
𝑦, 𝑦̂

)
∇𝑥 𝑓 (𝑥), (25)

where 𝑦̂ = 𝛼̂ + 𝑓 (𝑥) and ℓ 𝑦̂(𝑦, 𝑦̂) denotes the derivative of the per-observation

loss with respect to the prediction. This expression scales local prediction

sensitivity by how changes in predictions translate into changes in loss.

Even in this form, however, gradient-based methods do not provide

an attribution of explained fit. They measure local sensitivity at a single

point 𝑥 and do not aggregate effects across observations or along transitions

from baseline inputs to realized inputs. Moreover, optimization of model

parameters imposes no restrictions on the input gradient ∇𝑥 𝑓 (𝑥), even when

estimation minimizes the same loss function used to evaluate performance.

Stationarity conditions apply to parameters 𝜃, not to inputs 𝑥.

As a result, local loss gradients do not generally align with contribution to

overall predictive performance. A feature may exhibit large sensitivity while

contributing little to explained fit if it rarely varies, varies symmetrically, or

aligns weakly with the outcome. Such situations are especially common

outside the training sample.

By contrast, the Euler-style attribution integrates loss gradients with

respect to inputs along a path from a baseline input to the realized input,

and then aggregates these effects across observations. This construction

converts local sensitivities into a global, additive, and exact decomposition of

a well-defined scalar measure of predictive fit.

3.5 Integrated Gradient Methods
Integrated gradient methods, described in Sundararajan, Taly, and Yan (2017),

extend gradient-based sensitivity measures by integrating input gradients

along a path from a baseline input to the realized input. Their primary use is

to explain individual predictions by attributing the predicted value 𝑦̂(𝑥) to

input features relative to a baseline.

Integrated gradients are closely related to the Euler-style attribution

developed here. Both constructions rely on path integrals and exploit

smoothness of the fitted prediction function. Mechanically, the two methods

differ only in the object whose gradient is integrated: integrated gradients
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integrate ∇𝑥 𝑓 (𝑥(𝑡)), the gradient of the prediction function, whereas the

present framework integrates ∇𝑥ℓ (𝑦, 𝑓 (𝑥(𝑡))), the gradient of a scalar loss.

This distinction determines the scope and interpretation of the result-

ing attributions. Integrated gradients are designed to explain individual

predictions and are therefore applied observation by observation. When

aggregated, they average explanations of predictions rather than decompose

a global measure of model performance.

By contrast, the framework developed here targets realized predictive

accuracy of a fixed fitted model, measured as the reduction in loss relative to

a baseline predictor. The object being decomposed is not the prediction itself

but a scalar performance functional. Applying a path-integral construction

directly to the loss and then averaging across observations yields a global,

additive, and exact decomposition of explained predictive fit.

This distinction also explains the different computational structure of

the two approaches. Integrated gradients define feature-level contributions

directly and therefore require evaluating a separate path integral for each

input dimension. Euler attribution applies a path integral once to a scalar loss

function; the resulting inner product decomposes algebraically into feature-

level contributions. A single path integral therefore suffices regardless of the

number of inputs.

From this perspective, we can view Euler attribution and integrated

gradients as related path-integral methods specialized to different attribution

objects. By integrating loss gradients rather than prediction gradients, the

Euler-style attribution delivers a direct decomposition of realized predictive

accuracy, with predictable computational cost even in high-dimensional

nonlinear models.

3.6 Geometric Comparison
Figure 1 provides a geometric illustration of how the Euler-style attribution

developed here differs from the feature importance methods discussed above.

The comparison presumes that all methods are applied to a common object,

namely model fit as measured by a scalar loss. When alternative methods

are instead used to explain individual predictions, they address a different

question and are not directly comparable. Although this is not the most

common use of these methods, we have noted that many can be adapted to

study model fit, which is the setting illustrated in the figure.

The figure shows that the Euler construction exploits information along

a continuous path in the interior of the input space connecting the baseline

input 𝑥0 to the realized input 𝑥. Along this path, the attribution integrates local
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loss gradients, aggregating information about how predictive performance

evolves as inputs move from baseline to realization.

By contrast, the alternative methods rely on information drawn from a finite

collection of points. Shapley-value methods evaluate model performance

at the corners of the hypercube corresponding to feature inclusion and

exclusion. Perturbation and permutation methods compare performance

across collections of modified inputs that can be interpreted as boundary

points obtained by corrupting, permuting, or removing individual features.

Gradient-based sensitivity methods focus on local behavior at a single point 𝑥.

Even when these approaches are extended to include averaging or smooth-

ing along paths connecting such points, their evaluations remain confined

to the boundary of the input space. The Euler path integral instead traces

a smooth transition through the interior of the input space. This interior

path captures how loss changes continuously as multiple inputs vary jointly,

which is where interaction effects naturally arise.

The figure highlights that the Euler-style attribution exploits a different

and richer source of information about model performance than the leading

feature importance measures. This distinction is natural and appropriate,

since the Euler-style attribution is designed to answer a different and more

specific question: how the predictive performance of a fixed fitted model is

generated as inputs move from a baseline state to their realized values.

3.7 Computational Complexity
We have argued that the Euler-style attribution is a clean way to decompose

model fit back to features. We can also show that it is computationally efficient

relative to other methods that are sometimes applied to related questions.

Computational efficiency is not the motivation for the construction, but it

matters for practical use.

When we evaluate the Euler path integral numerically by quadrature

and compute gradients by finite differences, we can state explicit function-

evaluation counts. With 𝐾 input features and 𝑀 quadrature nodes, the

attribution requires𝑂(𝑀𝐾) evaluations of the fitted model 𝑓 (·). Each quadra-

ture node requires one gradient evaluation, costing 𝐾 + 1 model evaluations

under forward differences or 2𝐾 under central differences. Typical choices

for 𝑀 are 8, 16, or 32 and are largely independent of 𝐾.
11

Importantly, the

integral is taken over a one-dimensional path and does not involve numerical

integration over the full 𝐾-dimensional input space. Small numerical errors

in individual path integrals are likely to average out when contributions are

11
For example, Gaussian quadrature with 𝑀 nodes exactly integrates polynomials of degree

up to 2𝑀 − 1.
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aggregated across observations. As a result, a full Euler-style decomposition

of explained fit has predictable computational cost and remains feasible even

for high-dimensional input spaces.

Direct computation of Shapley values requires 𝑂(2𝐾) function evaluations

and is infeasible except for very small 𝐾. In practice, Shapley values are ap-

proximated using Monte Carlo sampling over feature orderings or coalitions,

which requires 𝑂(𝑃𝐾) function evaluations for 𝑃 samples. Common choices

for 𝑃 range from 10
2

to 10
4

and typically increase with 𝐾 or with the degree

of feature correlation in order to maintain accuracy.

In their simplest form, Perturbation and permutation methods require

𝑂(𝐾) model evaluations by perturbing each feature once. To reduce the

noise inherent in a single evaluation, however, it is common to average

over 𝑅 Monte Carlo perturbations per feature, leading to 𝑂(𝑅𝐾) function

evaluations. Typical values of 𝑅 range from 10
2

to 10
4
, and larger values are

often required as feature dimensionality and correlation increase in order to

maintain accuracy.

Many modern machine learning systems expose the computational graph

underlying the fitted prediction function 𝑓 (𝜃, 𝑥) and support automatic

differentiation, which computes exact derivatives by systematically applying

the chain rule to this graph. (See Griewank and Walther (2008).) Using

reverse-mode automatic differentiation, we can substantially reduce the

computational cost of the Euler path-integral attribution.

At each quadrature node along the path, a single backward pass computes

the full gradient of the loss with respect to all input features simultaneously.

As a result, the total computational cost of the attribution scales as 𝑂(𝑀)
forwardÐbackward evaluations of the fitted model, where 𝑀 is the number

of quadrature nodes, and is effectively independent of the number of features.

This contrasts sharply with Shapley- and perturbation-based methods,

whose computational cost is dominated by repeated forward evaluations un-

der modified inputs and therefore grows with the number of features 𝐾 unless

one is willing to accept increased approximation error in high-dimensional

settings. Thus, in addition to providing an exact, model-conditional decompo-

sition of explained fit, the Euler-style attribution achieves this decomposition

at relatively low and predictable computational cost. This computational

advantage becomes more pronounced in high-dimensional nonlinear models.

4 Summary
This paper develops a framework for attributing the explained predictive fit of

a fixed, fitted model to input variables in nonlinear regression models. Most
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existing feature-importance measures are designed to explain how features

contribute to individual predictions. These are logically distinct problems:

features can make large contributions to predictions without contributing

to model fit. This distinction is especially important outside the training

sample, where predictive performance rather than prediction sensitivity is

the primary object of interest.

In linear regression, explained signal strength is a homogeneous function of

the fitted values and therefore admits an exact Euler decomposition. Outside

this special case, nonlinear prediction functions generally lack a canonical

additive signal representation. We overcome this obstacle by applying the

fundamental theorem of calculus along a path in input space, yielding an

exact, additive decomposition of explained loss under mild smoothness

assumptions.

Relative to related approaches, the resulting attribution evaluates the

model along a continuous path through the interior of the feature space,

rather than relying solely on evaluations at boundary or corner points. By

accumulating marginal contributions along this path, the framework captures

how predictive performance evolves as inputs move jointly from a baseline

state to their realized values.

The resulting attribution is global, model-conditional, and aligned with

standard measures of predictive fit such as explained variance or reduction

in expected loss. It exploits structure that more general attribution methods

deliberately ignore, enabling exact additivity, computational efficiency, and a

clear interpretation of feature importance as contribution to realized model

performance.

In addition to the contributions to model fit, we derive corresponding

standard errors that reflect sampling variability in the data. These standard

errors enable statistical assessment of whether observed variation in feature

contributions across samples or over time is plausibly attributable to noise or

instead reflects changes in predictive relevance.

By clarifying the distinction between model-conditional attribution of fit

and alternative notions of feature importance based on sensitivity, pertur-

bation, or local explanation, the framework provides a principled basis for

understanding the sources of predictive performance in complex nonlinear

models. Together with companion papers that provide analytical solutions

for linear regression and classification models, the results establish a uni-

fied Euler-style perspective on feature importance across a broad class of

predictive settings.
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A Standard Errors
This appendix derives standard errors for the Euler contributions to explained

fit in the nonlinear regression setting. The derivation parallels the linear and

classification cases and requires no additional assumptions beyond those

already imposed in the main text.

A.1 Observation-Level Contributions

Recall that explained fit is defined as the reduction in average loss relative to

the baseline prediction,

𝛥ℒ = ℒ(𝑦) − ℒ(𝑦̂(𝑋)), (26)

and that the path-integral construction yields the additive decomposition

𝛥ℒ =

𝐾∑
𝑗=1

𝐶 𝑗 , (27)

with component-level contributions

𝐶 𝑗 = −E
[
(𝑥 𝑗 − 𝑥0𝑗)

∫
1

0

𝜕

𝜕𝑥 𝑗
ℓ (𝑦, 𝑓 (𝑥(𝑡))) 𝑑𝑡

]
. (28)

Define the corresponding observation-level contribution for observation 𝑖

as

𝑐𝑖 𝑗 = −(𝑥𝑖 𝑗 − 𝑥0𝑗)
∫

1

0

𝜕

𝜕𝑥 𝑗
ℓ
(
𝑦𝑖 , 𝑓 (𝑥𝑖(𝑡))

)
𝑑𝑡. (29)

By construction,

𝐶 𝑗 = E[𝑐𝑖 𝑗] =
1

𝑁

𝑁∑
𝑖=1

𝑐𝑖 𝑗 . (30)

In practice, the integral over 𝑡 is evaluated numerically using a fixed

quadrature rule. This numerical approximation does not affect the asymptotic

logic of the standard errors.

A.2 Standard Errors

Treating the fitted model parameters as fixed, the Euler contribution 𝐶 𝑗 is

a sample average of the observation-level quantities 𝑐𝑖 𝑗 . Under standard
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regularity conditions,

√
𝑁 (𝐶 𝑗 − E[𝑐𝑖 𝑗])

𝑑−→ 𝒩
(
0, E

[
(𝑐𝑖 𝑗 − 𝐶 𝑗)2

] )
. (31)

Accordingly, the standard error of 𝐶 𝑗 is

𝑆𝐸(𝐶 𝑗) =
√

1

𝑁
E
[
(𝑐𝑖 𝑗 − 𝐶 𝑗)2

]
. (32)

In empirical applications, this quantity is estimated by

𝑆𝐸(𝐶 𝑗) =

√√√
1

𝑁(𝑁 − 1)

𝑁∑
𝑖=1

(𝑐𝑖 𝑗 − 𝐶 𝑗)2. (33)

This estimator is identical in form to the standard errors used in the linear

and classification settings. No modification is required for the nonlinear case.

A.3 Standard Errors and Grouped Contributions

Let 𝑐𝑖 = (𝑐𝑖1 , . . . , 𝑐𝑖𝐾)⊤ denote the vector of observation-level contributions,

so that the global contribution of component 𝑗 is

𝐶 𝑗 = E[𝑐𝑖 𝑗], (34)

with expectations understood as sample averages. Throughout, the fitted

model is treated as fixed, and randomness arises only from sampling across

observations.

Because 𝐶 𝑗 is an average of observation-level contributions, its standard

error can be computed directly from the sample variance of 𝑐𝑖 𝑗 ,

𝑆𝐸(𝐶 𝑗) =
√

1

𝑁
E
[
(𝑐𝑖 𝑗 − 𝐶 𝑗)2

]
=

√√√
1

𝑁(𝑁 − 1)

𝑁∑
𝑖=1

(𝑐𝑖 𝑗 − 𝐶 𝑗)2. (35)

This expression does not require estimation or storage of any covariance

matrix and remains numerically stable even when the number of components

is large.

For any group of components 𝐺 ⊂ {1, . . . , 𝐾}, define the observation-level

group contribution

𝑐𝑖𝐺 =

∑
𝑗∈𝐺

𝑐𝑖 𝑗 , (36)
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and the corresponding global group contribution

𝐶𝐺 = E[𝑐𝑖𝐺] =
∑
𝑗∈𝐺

𝐶 𝑗 . (37)

The standard error of the grouped contribution is obtained directly from the

sample variance of 𝑐𝑖𝐺,

𝑆𝐸(𝐶𝐺) =
√

1

𝑁
E[(𝑐𝑖𝐺 − 𝐶𝐺)2] =

√√√
1

𝑁(𝑁 − 1)

𝑁∑
𝑖=1

(𝑐𝑖𝐺 − 𝐶𝐺)2. (38)

This univariate computation automatically accounts for correlation among

components within the group and avoids forming any high-dimensional

covariance objects.

Alternatively, we can define the covariance matrix of the vector of global

contributions 𝐶 as

𝛴𝐶 =
1

𝑁(𝑁 − 1)

𝑁∑
𝑖=1

(𝑐𝑖 − 𝐶)(𝑐𝑖 − 𝐶)⊤. (39)

Then for any group 𝐺, the grouped standard error can equivalently be written

as

𝑆𝐸(𝐶𝐺) =
√

1⊤
𝐺
𝛴𝐶1𝐺 , (40)

where 1𝐺 is the indicator vector for the group. This expression is algebraically

identical to the univariate variance formula above. In practice, however,

computing 𝑆𝐸(𝐶𝐺) from the observation-level group contributions 𝑐𝑖𝐺 is

simpler, faster, and more robust, especially when the number of components

is large.

A.4 Interpretation
These standard errors quantify sampling variability in the Euler attribution

conditional on the fitted prediction function. As a result, they do not

incorporate uncertainty in model estimation.

The observation-level formulation makes it straightforward to compute

standard errors, confidence intervals, and group-level inference for nonlinear

Euler attributions at essentially no additional computational cost once the

path integrals have been evaluated.



28 Decomposing Mean Squared Error in Nonlinear Regression

B Decomposition Algorithm
This appendix outlines the algorithm for computing exact Euler-style contri-

butions to explained fit in nonlinear regressions of the form 𝑦̂(𝑥) = 𝛼̂+ 𝑓 (𝜃, 𝑥).
The pseudo-code uses matrix notation for clarity and computational

efficiency. Rows of 𝑋 ∈ R𝑁×𝐾
correspond to realized input vectors 𝑥𝑖 , while

the baseline input 𝑥0 is a single 𝐾-vector replicated across observations. The

output 𝐶 𝑗 corresponds to the contribution defined in the main text and reflects

the average contribution to model fit across the full sample 𝑦.

We can compute gradients with respect to inputs via finite differences but

automatic differentiation is more efficient. Under a weighted or gls loss, we

evaluate all quantities in the transformed space but attribution always is with

respect to the original input coordinates.

Algorithm 1: Path-integral attribution of explained fit

# Notation mapping to main text:

# - X[i,:] corresponds to x_i (realized inputs for observation i)

# - x0 corresponds to x_0 (baseline input in feature space)

# - y_pred[i] corresponds to \widehat y(x_i) (full prediction,

incl. intercept)

# - C[j] corresponds to C_j

# - c[i,j] corresponds to c_{ij} (observation-level contribution)

# - dL corresponds to \Delta \mathcal L

# Inputs:

# y : (N,) outcomes

# X : (N, K) centered/standardized inputs (continuous; dummies

OK)

# f : prediction function; y_pred = f(X), returns (N,)

predictions

# IMPORTANT: f(X) returns the full fitted prediction

\widehat y(X),

# including any intercept \widehat\alpha.

# jac_x : routine returning row-wise input Jacobian of the full

prediction

# J[i,j] = d f(X)[i] / d X[i,j], shape (N,K)

# (typically via autodiff; finite differences as fallback)

# x0 : (K,) baseline input (default: zeros(K))

# W : loss-metric operator (optional), defining a GLS/weighted

# squared-error loss in transformed space.

# M : number of quadrature nodes on [0,1] (e.g., 8, 16, 32)
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# groups : optional list of groups; each group is a list of feature

indices

# (e.g., groups = [G1, G2, ...], where G is a Python list of

ints)

# Outputs:

# C : (K,) global input contributions to explained loss

improvement

# SE : (K,) standard errors of C (i.i.d. sampling of

observations)

# dL : scalar explained loss improvement relative to baseline

predictor f(x0)

# (optional)

# C_G : (num_groups,) group contributions

# SE_G : (num_groups,) group standard errors

def apply_W(Z, W):

if W is None:

return Z

if is_vector(W): # W is w_sqrt, shape (N,)

return W * Z # broadcasts if Z is (N,K): W[:,None] * Z

else: # W is Wmat, shape (N,N)

return W.dot(Z) # works for (N,) and (N,K)

if x0 is None:

x0 = zeros(K)

# Baseline inputs and baseline prediction

X0 = repeat_row(x0, N) # (N,K)

y0_hat = f(X0) # (N,) baseline prediction at x0

# Loss at baseline prediction (in chosen metric)

e0 = apply_W(y - y0_hat, W) # (N,)

L0 = mean(e0 ** 2)

# Loss at realized inputs

y_hat = f(X) # (N,)

e = apply_W(y - y_hat, W) # (N,)

L = mean(e ** 2)

# Explained fit (loss improvement relative to baseline)

dL = L0 - L
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# Quadrature nodes and weights on [0,1]

t_grid, a_grid = quadrature_nodes_weights_on_0_1(M)

# Accumulate observation-level contributions c_{ij}

# By construction, C_j = mean_i c_{ij}

c = zeros((N, K))

for m in range(M):

t = t_grid[m]

a = a_grid[m]

Xt = X0 + t * (X - X0) # (N,K)

y_hat_t = f(Xt) # (N,)

J = jac_x(Xt, y_hat_t) # (N,K)

e_t = apply_W(y - y_hat_t, W) # (N,)

J_tilde = apply_W(J, W) # (N,K)

# Because dL = L0 - L, contributions enter with +2 * e_t *

J_tilde:

c += a * (X - X0) * (2 * e_t[:, None] * J_tilde) # (N,K)

# Global contributions

C = mean_over_i(c) # (K,)

# Sanity check:

# sum(C) ~= dL (numerical quadrature error only)

# Standard errors, computed elementwise without any covariance matrix:

# SE(C_j) = sqrt( (1/N) * E[(c_{ij} - C_j)^2] )

# With sample averages, use the usual unbiased variance estimator:

# E[(c_{ij} - C_j)^2] = (1/(N-1)) * sum_i (c_{ij} - C_j)^2.

dc = c - C[None, :] # (N,K)

var_c = sum_over_i(dc ** 2) / (N - 1) # (K,)

SE = sqrt(var_c / N) # (K,)

# Optional: group contributions and group standard errors, computed

directly.

if groups is not None:

G = len(groups)

C_G = zeros(G)

SE_G = zeros(G)
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for g in range(G):

idx = groups[g] # list of feature indices in

group g

# Observation-level group contribution and its mean

c_g = sum_over_j(c[:, idx]) # (N,)

C_G[g] = mean(c_g) # scalar

# SE(C_G) = sqrt( (1/N) * E[(c_{iG} - C_G)^2] )

dc_g = c_g - C_G[g]

var_g = sum(dc_g ** 2) / (N - 1)

SE_G[g] = sqrt(var_g / N)

# Notes:

# - These SEs treat the fitted model as fixed (no estimation

uncertainty).

# - Group SEs computed from c_{iG} avoid forming any K-by-K

covariance matrix.
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